Mein Ma-ABI 1 52 + 1

THEMA: Grundaufgaben langfristige Aufgabe 2 HM: MMS/Formelsammlung

- **1** Gegeben ist die in \mathbb{R} definierte Funktion f mit $f(x) = (2 + \frac{x}{2}) \cdot (1 \frac{x}{2})^3$. Der Graph von f wird mit G_f bezeichnet.
- 1.1 Geben Sie die Koordinaten der Schnittpunkte von G_f mit den Koordinatenachsen an.

Erreichbare BE-Anzahl: 02

1.2 Begründen Sie ohne weitere Rechnung, dass G_f mindestens einen Hochpunkt hat.

Erreichbare BE-Anzahl: 03

1.3 $W_1(2|0)$ ist ein Wendepunkt von G_f .

Weisen Sie rechnerisch nach, dass auch $W_2(-1|\frac{81}{16})$ ein Wendepunkt von G_f ist und dass G_f keine weiteren Wendepunkte hat.

Erreichbare BE-Anzahl: 03

Die Gerade g verläuft durch W_1 und W_2 .

1.4 Stellen Sie G_f für $-4 \le x \le 4$ in einem Koordinatensystem dar.

Zeichnen Sie G_f in dieses Koordinatensystem ein und weisen Sie nach dass G_f du

Zeichnen Sie g in dieses Koordinatensystem ein und weisen Sie nach, dass g durch die Gleichung $y = -\frac{27}{16} \cdot x + \frac{27}{8}$ dargestellt wird.

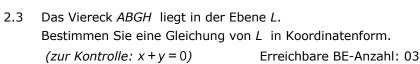
Erreichbare BE-Anzahl: 04

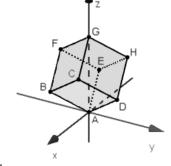
1.5 G_f und g schließen drei Flächenstücke ein.

Zeigen Sie, dass die Summe der Inhalte zweier dieser Flächenstücke ebenso groß ist wie der Inhalt des dritten.

Erreichbare BE-Anzahl: 04

1.6 Ermitteln Sie rechnerisch die Anzahl der Geraden, die parallel zu g sind und G_f berühren.


Erreichbare BE-Anzahl: 03


- **2** Betrachtet wird der abgebildete Würfel mit A(0|0|0), B(3|-3|3), G(0|0|9) und H(-3|3|6).
- 2.1 Berechnen Sie das Volumen des Würfels.

Erreichbare BE-Anzahl: 02

2.2 Begründen Sie, dass das Viereck *ABGH* ein Rechteck ist. Zeichnen Sie das Rechteck in die Abbildung ein und geben Sie die Koordinaten des Schnittpunkts seiner Diagonalen an.

Erreichbare BE-Anzahl: 04

2.4 Bestimmen Sie die Größe des Winkels, den die Ebene L mit der x-z-Ebene einschließt.

Erreichbare BE-Anzahl: 02

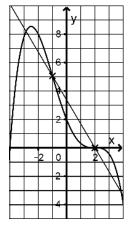
2.5 Betrachtet wird der Term $\overrightarrow{AM} + \frac{1}{2} \cdot |\overrightarrow{BG}| \cdot \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1\\1\\0 \end{pmatrix}$, wobei M der Mittelpunkt von \overrightarrow{BG} ist.

Geben Sie die Bedeutung des Terms im Zusammenhang mit dem Würfel an und begründen Sie Ihre Angabe.

Erreichbare BE-Anzahl: 04

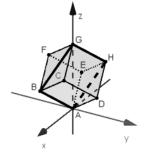
2.6 Die Ebene, die durch die Mittelpunkte der Kanten \overline{BC} , \overline{CG} , \overline{AD} und \overline{DH} verläuft, teilt den Würfel in zwei Teilkörper.

Begründen Sie mithilfe einer Skizze, dass das Volumen des kleineren Teilkörpers ein Achtel des Volumens des Würfels ist.


- **3** Beim Biathlon müssen die Athleten Schießeinlagen absolvieren.
 - Bei einem Biathlon-Wettbewerb muss ein Teilnehmer einmal liegend und einmal stehend auf jeweils 5 Scheiben schießen. Dafür stehen ihm je genau 5 Patronen zur Verfügung. Für jeden Fehlschuss muss der Läufer eine Strafrunde absolvieren.
 - Für Biathletin Franziska wird unter optimalen Bedingungen im Liegen eine Trefferwahrscheinlichkeit von 95 % und im Stehen eine Trefferwahrscheinlichkeit von 90 % angenommen.
- 3.1 Berechnen Sie die Wahrscheinlichkeit dafür, dass Franziska unter optimalen Bedingungen bei diesem Wettbewerb genau eine Strafrunde absolvieren muss.
- 3.2 Die Patronen für die Schießeinlagen liefert die Firma "Knall & Rauch". Erfahrungsgemäß sind 0,5 % aller durch diese Firma hergestellten Patronen fehlerhaft.
 - Die Firma liefert Patronen in Packungen zu genau 60 Stück.
 - Geben Sie die Wahrscheinlichkeit dafür an, dass eine solche Packung keine fehlerhafte Patrone beinhaltet.
 - Ermitteln Sie, wie viele Packungen wenigstens kontrolliert werden müssen, um mit einer Wahrscheinlichkeit von mindestens 95 % wenigstens zwei fehlerhafte Patronen zu finden.
- 3.3 Eine Patrone gilt als fehlerhaft, wenn mindestens eine von zwei möglichen Fehlerquellen auftritt. Erfahrungsgemäß treten bei 0,30 % aller Patronen ein defektes Zündhütchen und bei 0,22 % aller Patronen Risse in der Hülse auf.
 - Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:
 - Ereignis A: Eine zufällig ausgewählte Patrone mit Rissen in der Hülse besitzt ein defektes Zündhütchen.
 - Ereignis B: Eine zufällig ausgewählte Patrone besitzt sowohl Risse in der Hülse als auch ein defektes Zündhütchen.

Mein Ma-ABI	THEMA:	langfristige Aufgabe 2	Lösungen
$45^2 + 1$	Grundaufgaben	HM: MMS/Formelsammlung	Losungen

- (-4|0), (2|0), (0|2)1.1
- Begründung mit Hilfe der Koordinatenschnittpunkte 1.2


1.3
$$f''(x) = 0 \Leftrightarrow x = -1 \lor x = 2, f'''(-1) \neq 0, f(-1) = \frac{81}{16}$$

1.4

$$2.1 \quad |\overrightarrow{AB}|^3 = 81\sqrt{3}$$

2.2

Schnittpunkt der Diagonalen des Rechtecks: (0 | 0 | 4,5)

- 2.3 siehe Kontrollergebnis
- Die Größe des gesuchten Winkels beträgt 45°. 2.4
- Mithilfe des Terms lässt sich der Vektor AC bestimmen. 2.5

2.6

- 3.1 $p \approx 0.3741$
- 3.2 $P(X=0) \approx 0.7403$; Mindestanzahl der Packungen: 16
- $P(A) \approx 0.0909 \; ; \; P(B) \approx 0.0002$ 3.3