Übungsblatt

Thema: Klausurübung

Klausur 1

Schwerpunkt 1: Aufgaben ohne HM

1a) Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x_0 . Ermitteln Sie gegebenenfalls die Art der Unstetigkeit.

$$f(x) = \frac{x^3 + 3x}{x} \quad x_0 = 0$$
 (Lös.: $f(x_0)$ existiert nicht; nicht stetig; Lücke)

b) Bestimmen Sie $t \in \mathbb{R}$ so, dass die Funktion g an der Stelle $x_0 = 0$ stetig ist.

$$g(x) = \begin{cases} x+1 & \text{für } x < 0 \\ x^2 + t & \text{für } x \ge 0 \end{cases}$$
 (Lös.: $t = 1 \lim_{x \to x_0} g(x) = 1$)

c) Bestimmen Sie jeweils den Grenzwert der Funktion.

$$\lim_{t \to t_0} h(t) = \frac{3t^2 + 3t}{t + 1} \qquad t_0 = -1 \qquad \lim_{r \to +\infty} g(r) = \frac{4r \cdot (1 + r)}{r^3 + 1} \qquad (L\ddot{o}s.: \lim_{t \to t_0} h(t) = -3 \lim_{r \to +\infty} g(r) = 0)$$

2a) Eine Gerade mit der Steigung $m = -\frac{1}{3}$ geht durch den Punkt P(-2|1). Geben Sie die Gleichungen von drei weiteren Geraden an, die zu dieser Geraden parallel

b) Eine Gerade mit der Steigung $m = \frac{1}{2}$ geht durch den Punkt P(2|3). Geben Sie einen weiteren Punkt an, der auf dieser Geraden liegt.

c) Notieren Sie den Text einer möglichen Sachaufgabe, die auf eine Funktion mit der Gleichung $y = m \cdot x + n$ führt.

3 Bilden Sie die 1. Ableitungsfunktion der Funktion f mit Hilfe des Differenzenquotienten und seines Grenzwertes. Prüfen Sie ihr Ergebnis mit Hilfe einer geeigneten Ableitungsregel.

$$f(x) = \frac{1}{x}; x \neq 0$$
 (Lös.: $f'(x) = -\frac{1}{x^2}$)

4 Ermitteln Sie g'(t) auf zwei verschiedene Weisen. (Der ausführliche Rechenweg ist verlangt.) $q(t) = (4 - t)^2$ (Lös.: q'(t) = 2t - 8 z.B.: Kettenregel; binomische Formel + Summenregel)

5 Gegeben ist die Funktion $f(x) = x^2 - 9$

a) Für welches x_0 gilt $f'(x_0) = 0$? (Lös.: $x_0 = 0$)

b) Bestimmen Sie die Koordinaten der Schnittpunkte des Graphen von f mit der x – Achse.

(Lös.: $P_1(3|0), P_2(-3|0)$

Geben Sie die Nullstellen an. (Lös.: $x_{01} = 3$; $x_{02} = -3$)

c) Ermitteln Sie die Gleichungen der Tangenten an den Graphen von f in den Nullstellen. (Lös.: $t_{1/2} = + 6x - 18$)

Schwerpunkt 2: Aufgaben mit HM

d) Ermitteln Sie die Winkel, den die Tangenten mit der positiven x – Achse einschließen.

(Lös.:
$$\alpha_1 = 80,5^{\circ} \alpha_2 = 99,5^{\circ}$$
)

6 Berechnen Sie, in welchen Punkten der Graph der Funktion f die Steigung m besitzt.

(1)
$$f(x) = x^4$$
 $m = 4$ (2) $f(x) = x^6$ $m = 18750$ (3) $f(x) = x^0$ $m = 1$ (Lös.: (1) $P(1|1)$; (2) $P(5|15625)$; (3) $n.l.$)

7 Eine Rutsche hat ein Profil, das dem Verlauf des Graphen der Funktion f mit $f(x) = -0.002 \cdot (x - 20)^3$ $(x \in \mathbb{R})$ im Intervall $0 \le x \le 16$ entspricht.

a) Bestimmen Sie die Steigung am Ende der Rutsche.

(Lös.:
$$m = -0.096$$
)

b) In einem Punkt $P_0(x_0|f(x_0))$ des Graphen von f hat die Rutsche eine Neigung von 45°. Ermitteln Sie x_0 .

(Lös.: $x_0 = 7,09$)
(Bildquelle:http://www.nibis.de/)

